
Software Engineering

Group 8

Search And Rescue Assistant (S.A.R.A.)

https://abhiek187.github.io/emergency-response-drone/

Mar. 17, 2019

Team Members:
Sahana Asokan

Won Seok Chang
Avnish Patel

Abhishek Chaudhuri
Shantanu Ghosh

Srikrishnaraja Mahadas
Sri Sai Krishna Tottempudi

Vishal Venkateswaran

1

https://abhiek187.github.io/emergency-response-drone/

Individual Contributions Breakdown
Project

Deliverable
Sahana Won Seok Avnish Abhishek Shantanu Krishna

M.
Krishna T. Vishal

Interaction
Diagrams
(10 points)

 16.7% 33.2% 16.7% 16.7% 16.7%

Design
Principles
(10 points)

33.2% 16.7% 16.7% 16.7% 16.7%

Class Diagram
& Description

(5 points)

20% 26.66% 26.67% 26.67%

Signatures
(5 points)

 33.3% 33.4% 33.3%

Styles
(5 points)

 16.7% 83.3%

Package
Diagram
(2 points)

 100%

Map Hardware
(2 points)

 33.3% 66.7%

Persistent
Data Storage

(3 points)

 50% 50%

Other
(3 points)

33.3% 16.7% 16.7% 33.3%

Algorithms &
Data

Structures
(4 points)

15% 50% 10% 25%

Appearance
(6 points)

 80% 20%

Prose
Description
(5 points)

 70% 15% 15%

Testing Design
(12 points)

 25% 25% 25% 25%

Merging
Contributions

(11 points)

 33.4% 33.3% 33.3%

Project
Coordination

(5 points)

 100%

2

Plan of Work
(2 points)

 50% 50%

References
(-5 points)

12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 12.5% 12.5%

Total 5.89 9.355 5.921 20.809 11.164 16.55 11.801 11.5026

3

Table of Contents

Interaction Diagrams and Design Principles 5

Class Diagram and Interface Specification 11
Class Diagram 11
Data Types and Operation Signatures 12
Traceability Matrix 16

System Architecture and System Design 17
Architectural Styles 17
Identifying Subsystems 18
Mapping Subsystems to Hardware 19
Persistent Data Storage 20
Network Protocol 20
Global Control Flow 21
Hardware Requirements 21

Algorithms and Data Structures 22
Algorithms 22
Data Structures 23

User Interface Design and Implementation 24

Design of Tests 25

Project Management and Plan of Work 28
Merging the Contributions from Individual Team Members 28
Project Coordination and Progress Report 29
Plan of Work 30
Breakdown of Responsibilities 31

References 32

4

Interaction Diagrams and Design Principles
Use Case 1 - Move Drone

The diagram for the first use case is displayed above. In this case, the User will
first activate the system in order to gain access to the controller. From there the
User is able to use the controller to move the drone. The User will be able to see
visual feedback from the drone.
Design Principles:
The design principles utilized in this use case include the Low Coupling Principle.
This design principle is utilized as the communication links that exist are very
short. Most of the communication is done between the User and controller, and
then the controller and drone.

5

UC-3: GetLocation

The diagram above demonstrates the interactions between classes in UC-3: get the
location. Once the user has control of the drone and being able to maneuver around
obstacles. First, the user sends a request to get the location of the drone to the
controller which then gets requests it to the drone. The drone then requests the
coordinates to the GPS server and gets the coordinates and sends it back to the
controller to make it visible. The user sees the drone’s location based on longitude
and latitude.

Design Principles:
The design principles employed in the process of assigning responsibilities were
the expert doer principle and high cohesion principle. The expert doer principle is
used because each of the classes is an expert for specific functions. An example,
the drone is responsible for getting the coordinates from the GPS server and
relaying it back to the controller for the user to see.

6

Use Case 4 : Check Obstacles

Design Principle:
The design principle for this use case is the expert doer principle and high cohesion
principle because the parameters for the obstacle is super specific. And that data
should be focused on because it can affect the overall behavior of the drone. It is
also important that the specific obstacles that are being checked for are being
communicated to other sources.

7

Use Case 6 -Get Status

The interaction diagram for use case 6 is displayed above. The drone basically
sends a signal to the system which the user can see the result of through the
controller. The part of this use case is to let the user know of the operation status of
the drone, in particular, the battery level. The user is also able to view the past
values sent by the drone.

Design Principles:
The design principles utilized by this use case are Expert Doer Principle, High
Cohesion Principle, and the Low Coupling Principle. Since this use case is the only
use case that knows about the battery status it makes sense that the Expert Doer
Principle is used. As for the High Cohesion Principle, the only computation done
by this part is the battery level. The Low Coupling Principle deals with the concept
that this use case does minor communication between the drone and the controller.

8

Use Case 7: GetData

The diagram above demonstrates how the user, controller, and drone interact with
each other to show necessary data of drone to the user, so the user can control the
drone. When the system needs data, the drone sends the data that is saved on it to
the controller upon the request by the controller. When the controller receives the
data, it displays it on the webpage, so the user can see the data and make necessary
judgments of controlling the drone. The user will verify its execution by the
updated live-feed.

Design Principles:
The design principle of this use case is High Cohesion Principle. There is more
focus on displaying the necessary data and sending instructions to drone to control
it, rather than having a high responsibility of computing data.

9

Use Case 8 :Return to Home

Design Principles:
The design principle for this use case is both Expert Doer Principle and Low
Coupling Principle. It is important that this object reports when the drone needs to
be returned to the original location and to be able to recognize when its supposed
to return to the original location. It is also implementing Low Coupling Principle
because it should only be focusing on data and communication relating to returning
home.

10

Class Diagram and Interface Specification
Class Diagram

11

Data Types and Operation Signatures
1. Controller:The main role of this class is to use the help of the other classes

to maneuver and utilize the drone.

Operations

PowerDrone()-Boolean: This function is responsible for turn the drone on

and off. It will have a value of true if the drone is on and false otherwise.

ControlDrone()-Void: The purpose of this function is to maneuver the drone

in a certain direction based on the parameters and it will not return anything.

The parameters are type of movement (String). The acceptable string inputs

are Rotation, Forward, Reverse, throttle, Strafe.

GetLocation()- Double Array: This uses the GPS to get the location of the

drone in the form of latitude and longitude.

Attributes

1. Power: boolean -It has a value of true or false depending on if the
drone is on or not.

2. InputMovement: string-This is the type of movement the user wants to
do.

3. RotateRight: boolean- Has a value of true if the user wants to get the
drone to move to the right

4. RotateLeft: boolean - Has a value of true if the user wants to get the
drone to rotate to the left

5. StrafeRight: boolean - Has a value of true if the user wants to get the
drone to move to the right

6. StrafeLeft: boolean - Has a value of true if the user wants to get the
drone to move to the left

7. ThrottleUp:boolean-Has a value of true if the user wants to get the
drone to move to the up.

12

8. ThrottleDown:boolean-Has a value of true if the user wants to get the
drone to move to the down.

9. MoveForward: boolean-Has a value of true if the user wants to get the
drone to move to the forward.

10.MoveReverse: boolean - Has a value of true or false that will depend
on whether the drone is moving backwards or not.

2. System: The system class mainly deals with the inner mechanisms of the

drone and its operational status.

Operations

1. GetStatus()-Double Array: The main role of this function is to gather

the information of the drone. Some of the possible data it will gather

will be the battery life, altitude, and speed along with any other

needed information.

2. ViewPastStatus()-2-D Double Array: The values returned from

GetStatus will be stored in a 2-d double array. If this function is called

it will return the mentioned array.

3. getWebPage(): String: This function will output the url of the user

interface in the form of a string.

4. ReturnHome(): Boolean: Once the function is executed and has

completed/ failed its task it will either output true or false

respectively.

Attributes

1. Battery: double- The amount of battery life left on the drone.
2. Altitude: double-The height of the drone based on the sensors.

13

3. Speed: double-The speed of the drone in mph.
4. Values: 2-d double array-Contains battery life, altitude, speed and any

other required values in a given instant. Each row represents one
instance.

5. Url: string-The url of the display website.
6. Completed: boolean - Has a value of of 1 or true if the drone has

managed to return home.
7. SensorFront: double - The time it takes for the front sensor signal to

be transmitted and returned to the drone.
8. SensorBack: double - The time it takes for the back sensor signal to be

transmitted and return to the drone.
9. SensorRight: double - The time it takes for the right sensor signal to

be transmitted and return to the drone.
10.SensorLeft: double - The time it takes for the left sensor signal to be

transmitted and returned to the drone.

3. Display: This class is mainly responsible for showing and updating the

graphical user interface.

Operations

1. ViewStatus()- Boolean: This function takes the values of GetStatus

and displays them in the appropriate place in the GUI. Upon

completion it will either return true or false.

2. ViewFeedback()-Void: This is responsible for displaying the

videofeed of the drone. Since this is happening constantly, it will have

a return type of void.

Attributes

14

1. LiveFeed: boolean-Has a value of true if the camera feed is being
displayed on the controller.

2. ShowButtons: boolean-Has a value of true if the buttons are being
displayed on the controller.

3. ShowValues: boolean - Has a value of true if there are values such as
speed, battery life, altitude are being displayed on the controller.

4. GPS: The class GPS is used to implement the location component of the

drone. The functions for this class are displayed below.

Operations

1. GetGPS(): Boolean: This function is there to initiate the connections

required for GetLocation to work. Upon completion it will either

return true or false.

Attributes
1. Latitude: double - Returns the current latitude of the drone.
2. Longitude: double - Returns the current longitude of the drone.

15

Traceability Matrix
Domain Concepts/
Software Class

Controller System Display GPS

Controller X

Interface X X

Connector X X X

Page Maker X

Dynamic Data X X

Notifier X X

Calibrator X X

The software classes were developed from the domain concepts based on the
required functionality of each domain concept. The core functions of the drone
involved movement, operational status, user interface, and location. Each of these
core functions represents a software class. So the traceability matrix above
represents how each of the domain concepts correspond to the core functions of the
drone i.e. the software classes.

16

System Architecture and System Design
Architectural Styles

REST: Since all the information about the drone is displayed on a website using
HTML, it complies with a RESTful API. The video feed, physical drone data, and
controller inputs are gathered from servers controlled by other subsystems and
represented as hypertext.

Client/Server: The client is the person controlling the drone and the server is the
information picked up by the drone. When the user wants to throttle the drone, for
instance, a request is sent to the drone’s motors to move up or down, which then
responds with movement seen by the live video feed.

Layered: Certain services of the drone depend on each other. For example, getting
the current location of the drone is initiated by the controller, which depends on the
drone requesting its location, which depends on the coordinates returned by the
GPS.

Uniform interface: All resource should be reachable from any devices. It should
not be constraint to only one device. The website should be simple but effective.

17

Identifying Subsystems

The PhysicalData package contains part of the Controller class to power the drone.
It imports the LocationData package to get the drone’s location and imports the
ImageProcessing package to display live data on the controller. It also contains the
System class to display the current status of the drone.
The ImageProcessing package contains the Display class for displaying the live
video feed and physical data of the drone.

18

The Obstacles package has its own Controller class for controlling the drone to
avoid obstacles. Like the PhysicalData, it imports the drone data from
LocationData to steer the drone in the right direction.
The LocationData package has a Drone class to request its location and a GPS
class to retrieve the drone’s position.

Mapping Subsystems to Hardware
1. Physical Data

The majority of the hardware for physical data will incorporate the
Raspberry Pi, which will send the required signals to the software component. The
motors will also be involved when it comes to the detection of speed.
2. Image Processing

The hardware needed for this substem will include a camera inside a phone
that will be mounted to the drone. The mobile device is going to be a Samsung
Galaxy S4. The rear camera is a 13.0 MP autofocus camera with LED flash, with a
Sony IMX091PQ sensor. We are also using an infrared lens to be able to detect
people.
3. Obstacles

The hardware that is mapped from the Obstacles’ subsystem is the the
ultrasonic sensor that will be attached in multiple locations around the drone. The
model of the ultrasonic sensor that is going to be used is HC-SR04.
4. Location Data

The mapped hardware for the Location Data subsystem would be the GPS,
which is inside the smartphone that is mounted to the drone.

19

Persistent Data Storage

The drone will be equipped with Raspberry Pi. Even with the drone powered off,
this system will be capable of saving any data from previous flights. However, this
data can be transferred to another system since it is unnecessary for the drone to
carry all the data from previous flights.

Another form of data storage is the image component of the drone. Even though it
is a live feed, it will require some form of data storage through cache memory.
This is due to the fact that the image will be required to be transferred from one
device to another. Similar to the image processing, the ultrasonic sensor will also
have a cache data component. The ultrasonic sensor will have to transmit the
distance between the drone and any obstacles to the controller. This data does not
need to be stored for a long time, but is still required if any action is needed to be
taken by the drone.

20

Network Protocol
For managing the network that our system will make use of, the HTTP

communication protocol will be utilized. This was chosen because the data that is
being transmitted ends up as part of a browser-based display, for which HTTP can
be used for simpler client-server interactions. The webpage that the drone operator
sees requires data regarding the drone’s location (GPS), the live camera feed, and
other drone-related physical data (battery level, speed, etc.). These need to be
delivered across the drone’s connection to the operator’s device, which naturally
calls for a web-based communication protocol layered around TCP/IP.

Global Control Flow

Our project can be noted as both procedure driven and event driven. The reason behind this is
because initially the same steps have to be taken to initially operate the drone however it is
mainly an event driven system because the case for why this drone is being used is different.
There are a lot of situational factors so the user must generate a different series of actions in
different order depending on the specific case we are looking at. So it is mainly event driven
because it is very unlikely that the same steps will be taken in the same order for more than one
event.

Our system is an event response type with concern for real time. Since it is real time it is not
periodic. It is not periodic because the time differs for the different situations. There are no time
constraints for each case because we don’t know how long each case would take.

Hardware Requirements
The access to control the drone can be done through any touch-enabled

device with a internet browser such as a smartphone or tablet. The device requires
a minimum of 1 GB since to process the live-feed video from drone smoothly.
There will also be a a camera mounted on a phone that is placed on the drone in
order to capture video. The interior of the drone will contain a raspberry pi. The
device that will process the live-feed from the camera has to have a colored display

21

of a resolution of at least 1920 x 1080 to allow the user to see where the drone is
clearly. This can be done with any modern display devices like smartphones or
tablets. Because of the quality of the image that is transmitted from the camera on
the drone, the connection between the controller and the drone has to operate
smoothly, with relatively low latency. The wireless connection bandwidth is a 2.4
GHz connection.

Algorithms and Data Structures

Algorithms

The main factor of this project is to have a safe and efficient flight for drone.
The drone will not be capable of performing tasks such search and rescue if the
drone is not durable. To accomplish this goal is to control the velocity of drone and
locate any obstacles on it’s way. Calculating the velocity and distance between the
drone and obstacles involve complex algorithms.

The velocity of the drone can be calculated by using the formula that states
that . The variable v will stand for velocity, a will stand for acceleration,v = a * t
and time stands for time. Of course though we will have to account for other
factors such such as thrust and pitch for when we are going over the drone’s
movements. The total amount of thrust is going to be equal to the following
equation.

.t F t0) dF = * (V max
V max−V − F

FD is the drag force.
Ft0 is the force of thrust when the velocity is at 0 meters/second.
FD

.5 d (A(f ront) os(P (max) (motor))) A(top) in(P (max) (motor)))] = 0 * ρ * C * [* c − P + (* s − P * v2

22

For the above equation the constant is going to be equal to the density of air, ρ
while the constant Cd is equal to the drag coefficient. The variable Pmotor is the pitch
of the motor, while Pmax is the maximum pitch the drone is able to achieve without
losing altitude.
Pmax = os ()c −1 m

T 0
The variable m is equal to the mass of the drone and the variable T0 is equal to the
total thrust of the drone.

When the ultrasonics sensors recognize any obstacles, the drone needs to
know where the obstacles are. The drone is equipped with four ultrasonics sensors.
The four sensors should locate the exact location of obstacles and alert the user if
necessary, so the user can maneuver the drone. This can be also used in the
function such as “return to home” when the drone autonomously return to the base.

The distance between two points in 3-D Cartesian coordinates involves

using equation, d(P1,P2) = , P1 = (x1, y1, z1), √(x)2 − x1
2 + (y)2 − y1

2 + (z)2 − z1
2

and P2 = (x2, y2, z2) where P1 can be the coordinates of drone and P2 can be the
coordinates of obstacle.

However, since the drone is equipped with the ultrasonics sensors, it can use
the time it took for an ultrasonic wave to travel to an obstacle to calculate the
distance between them. The equation will be, .istance to object d = 2

time speed*
Time is divided by two since the time it took is an ultrasonic wave is to be

emitted and reflected back to the drone combined. Only one way is needed.
Speed is the speed of ultrasonic wave, which will be 340 meters/second in

the air.
The speed of ultrasonic wave is significantly greater than the speed of drone,

that speed of drone can be ignored in the calculation.
.

Then d(P1,P2) will be the distance between the drone and obstacle. If the distance is
less than a safe distance, the user will notice the drone through the alert on screen
and will be able to maneuver. It is very important that our algorithm is consistently
checking this distance because it can alert a safety issue if needed. The equation
we’ll be using was mentioned earlier and it is d(P1,P2) =

23

, P1 = (x1, y1, z1). This is going be estimated in √(x)2 − x1
2 + (y)2 − y1

2 + (z)2 − z1
2

cartesian coordinates because we are dealing with real time.

Data Structures

The main data structure that we will use is going to be an array. We will use an
array because of its flexibility and performance. We need a structure that can store
many variables and is possible to easily index. This array will mainly be used for
the variables that are used for status and operation, along with physical data.

User Interface Design and Implementation

The design of our user interface hasn’t changed that much from our initial
mock-up. However, we decided to have this controller be integrated with our

24

project website for ease of access. The user will just have to go to
https://abhiek187.github.io/emergency-response-drone and tap the controller
button to access this site. Or if the user wants to access this via 1 button press, they
could just bookmark this page for later use. This interface is designed to be
responsive on most mobile devices in landscape mode. The rest of the interface
remains the same. The user can tap one of the icons to control the drone and see
real-time feedback through the drone’s camera. All of this functionality will be
integrated with our subsystems and classes described in the class diagram. Since
this controller will display live feed and use location data, the controller will
prompt the user to allow the website to use the device’s camera and location. The
controller can only work optimally if these permissions are granted to the
controller. The only thing is that the controller will not power on is the camera on
the drone. Instead that will have to be powered on manually.

Design of Tests

A.
Types of tests:
1. MoveDrone- The user should be able to control the movement of the drone. Any
instruction that the user gives via the controller should be received and performed
by the drone. It should be able to successfully complete each type of movement.
This includes rotating clockwise and counterclockwise, moving forward/
backwards, moving up/down and finally moving right/ left. So there will be a test
for each individual type of movement.

2. GetData/GetStatus - The user should be able to receive and view the data the
drone is transmitting. This data will include the drone’s current operating status,
such as battery life. This data should be visible on the controller and should be the
most up to date information from the drone. This data should also include the
drone’s current speed.

25

https://abhiek187.github.io/emergency-response-drone

3. ViewCamera - The user should be able to receive the video feed from the drone.
The drone will transmit the video feed from its camera to the controller. The video
feed should continue to transmit no matter what action the drone takes.

4. Check Obstacles- The user should accurately be able to detect any nearby
obstacles. It should work in all directions. Once it finds the obstacles it needs to
notify the user of the distance and direction of the obstacle

5. Power- The drone should turn on and off when required by the user. If the drone
is in flight it should not be able to be turned off.

6. Display- Runs the interface and shows all the features incorporated into the
interfaces. This includes the video feed from the camera, the various buttons for
movement and the data values of the drone.

B.

ViewCamera-We ended up testing various approaches to see which version would
be clear and see how far the range for each approach was. During testing we had
two different approaches which were screen sharing and an app called Alfred. The
test involved establishing a connection between the phone and computer and then
seeing how far the phone can be taken away from the computer and still have a
clear image. At first when both approaches were close to the computer, the screen
share was very clear and Alfred had good clarity. However, the quality of screen
share rapidly decreased as the phone moved away when using screen sharing.
When it came to Alfred, the quality remained the same for a while, but as the
phone moved farther and farther away, the quality decreased. This is because the
phone was starting to go out of range of the wifi.

GetData/GetStatus-One of the data values that we have tested includes the location
of the device in use. This was done by running the code for the controller in three
different locations and seeing that these are in fact different in latitude and
longitude. The test was conducted in Edison, South Brunswick and East Windsor.

26

As expected each of these values were different. In Edison the values were: Lat:
40.55° and Long: -74.39°. In South Brunswick the values were: Lat: 40.38 ° and
Long: -74.54°. In East Windsor the values were: Lat: 40.25° and -74.53°.

Display- We tested the display to check for how the controller responded to the
user inputs and how fast or slow the latency of the device was. This was done by
triggering different buttons to observe the behavior of the controller. We also
checked the controller to see if the different latitude and longitude coordinates
mentioned above were displayed on the screen for three different locations. This
was also tested using different devices like a laptop, a smartphone, or a tablet. In
all of these cases, the live feed was present, the buttons were working, and the data
from the drone was displayed correctly on the screen.

Check Obstacles- To test the responsiveness of the ultrasonic sensors, we setup
different test cases and measured the time it took for a signal to be outputted from
the sensor. This was done by having the sensor emit several sound waves at
approximately 40 Hz, and then observing the output according based on the time it
took for the wave to reach back to the sensor. This was repeated for objects placed
in a straight line approximately 1 meter, 2 meters, and 4 meters away. Although the
accuracy of the sensor did slightly decrease the further the distance became, it was
able to accurately determine the distance to within 8-10 cm of the target.

C.
We are planning on using the Horizontal Integration method for our testing. More
specifically we will be using the Top-down integration version for our testing
purposes. The first test we will have to do is display because the controller needs
access to the buttons in order to run the rest of the tests. Once the display is on the
next test will be power. This will turn the drone on and allow use to test the
functionality of the drone. The next thing that will be tested will be view camera.
This will allow the user to see the video that the drone is transmitting. Once the
video feed is working the next step is to see if the drone can move. A test will be
conducted to see that it is possible to maneuver the drone in all 6 directions. Once
the drone is in operation the next step is to test the check obstacles function. This

27

will let the user know if there are any obstacles nearby. Once the drone is in stable
operation the final step would be use the getData/ getStatus to see the properties of
the drone in action.

Project Management and Plan of Work
Merging the Contributions from Individual Team Members

Shantanu came up with the project idea and was able to explain how we could
contribute to the project during weekly meetings. We decided to split the work into
four subgroups: image processing, location data, physical data, and obstacles.
Since not everyone can make it to the weekly meetings, each subgroup has set up
their own meeting times to discuss specific functionalities to be implemented in
this project. This also ensures that each person can discuss how they will contribute
toward building S.A.R.A.

Krishna Mahadas created and shared the Google Drive for our project so we could
easily collaborate on creating the reports.

Abhishek manages the GitHub repository to maintain the project code and divide
the work among the team. Each branch corresponds to the different subgroups.
Each person works on their subgroup work and when it’s ready to be implemented,
it is merged into the master branch.

A website is going to be made and developed with relevant updates to the project.
This will be managed by Abhishek. Other team members will help.

28

Project Coordination and Progress Report
Image Processing:
The image processing component of the project mainly implements the use case
ViewCamera. So far we have already been able to display what the phone camera
is seeing on other devices such as a pc. We tried using multiple third-party
applications and features of the Android phone to see which works best. Some
third-party applications we tried are Alfred and IPwebcam. Both of these
applications are able to display decent quality video feed for a reasonable range
using wifi. Another approach was using the screen mirroring function of the
android. This approach also uses wifi and provides a really good quality image.
However, it does not have much of the range due to the fact the phone needs to be
close to where ever the display is being transmitted to. So we decided to try using
the Alfred application for now. Currently, we are trying to manipulate the given
video feed from the application, so that it is possible to transfer the video feed to
our user interface. This is being done by using the HTML code of the webpage
version of the application since the camera feed is currently being displayed there.
A prototype of the controller can be found on our website.

Location Data:
The use case that is the main function of location data is GetLocation. We already
have code for this use case in HTML that provides the location of the given device
in latitude and longitude form. The next step is to transmit this information from
the android device to the user interface.

Physical Data:

29

The physical data part of the project deals with the GetStatus and GetData use
cases. It will also include the MoveDrone use case. Due to the hardware
component of the project, this part of the project can be in effect once the drone is
in full operation. Specifically this part of the project will depend on the use of a
Raspberry Pi. So currently, we are all working towards the construction and
integration of the hardware and software components of the drone.

Obstacles:
The Obstacles section of the project deals with the remainder of the use cases. The use
cases include CheckObstacles, AvoidObstacles, and ReturnToHome. Similar to the
physical data component, this section will mainly be in effect once the drone is working.
So as mentioned before, we are all working to complete the hardware and software parts
of the drone.

Plan of Work

● Milestones:
○ Drone Camera Transmission: Be able to provide a reliable stream from the

onboard phone camera to a mobile device set aside to mock the operator’s control
device.

■ Date of Completion: March 8th, 2019
○ Hardware-Associated Tasks: After all necessary hardware components arrive

between March 1st-3rd, the construction of the drone frame to fit the needs of the
project. This includes mounting the onboard camera and microcontroller to the
drone frame.

■ Date of Completion: March 20th, 2019
○ Onboard Data Management/Transmission: Determining the operational status of

the drone from real-time data/status of equipment, signal, etc. This needs to be
successfully relayed back to the operator’s control device.

■ Date of Completion: April 1st, 2019
○ Webpage Integration: Collecting all relevant data and finalizing

transmission/display of said data to the operator’s control device.
■ Date of Completion: March 22nd, 2019

○ “Crash-testing”: Success of Flight testing to determine drone’s survivability

30

■ Date of completion: April 8th, 2019
○ Obstacle avoidance: In addition to recognizing objects in its’ way, the drone will

react to maneuver out of harm’s way/avoid pathing into roadblocks
■ Date of completion: April 15th, 2019

Breakdown of Responsibilities
● Project divisions:(all tasks that are in progress/to be completed)

○ Visual Data Processing:
■ Shantanu: Management of the main wireless network/communication of

data
■ Abhishek: Webpage development/Data handling on operator-side
■ Krishna Mahadas: Onboard camera handling, transmission (in progress)

○ Obstacle Management
■ Vishal: Managing sensor data, implementing avoidance/assoc. movement

○ Location Data
■ Avnish: Gathering onboard GPS data, transmission

○ Physical Drone Data
■ Krishna Tottempudi: Determining overall operational status from

collected data
■ Sahana: Determining power levels/operational lifespan of drone real-time
■ Won Seok: Determining the strength of signal/connection to the operator

All other contributions to the project can be found in the individual contributions breakdown
matrix on page 2.

31

References
1. “Drone Sense”

https://www.dronesense.com/?gclid=EAIaIQobChMIqo-45_Gx4AIVwoCfCh2CbA0QE
AAYASAAEgKMu_D_BwE

2. https://s.yimg.com/ny/api/res/1.2/2P8Y6UqlB8dKOiVIg9Rscg--~A/YXBwaWQ9aGlnaG
xhbmRlcjtzbT0xO3c9ODAw/http://media.zenfs.com/en-US/homerun/digital_trends_973/
8122e594705a009db372bf32720d9fe9

3. Rhode, Steve.“DRONE SEARCH-AND-RESCUE STUDY REVEALS POTENTIAL,
LIMITS“
https://www.aopa.org/news-and-media/all-news/2018/october/01/drone-study-reveals-pot
ential-and-limits

4. Byran, Cantfil. “ United States Coast Guard Search and Rescue Summary Statistics 1964
thru 2015.”
https://www.dco.uscg.mil/Portals/9/CG-5R/SARfactsInfo/SAR%20Sum%20Stats%2064-
16.pdf

5. “Using a Raspberry Pi distance sensor (ultrasonic sensor HC-SR04).”
https://tutorials-raspberrypi.com/raspberry-pi-ultrasonic-sensor-hc-sr04/

6. “Raspberry Pi Distance Sensor: How to setup the HC-SR04”
https://pimylifeup.com/raspberry-pi-distance-sensor/

7. “HC-SR04 Ultrasonic Range Sensor on the Raspberry Pi”
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi

8. “Installing GPIO”, https://gpiozero.readthedocs.io/en/stable/installing.html

32

https://www.dronesense.com/?gclid=EAIaIQobChMIqo-45_Gx4AIVwoCfCh2CbA0QEAAYASAAEgKMu_D_BwE&fbclid=IwAR3DqethzWJijBZxyXBlNiOGh9HX8zBOH5Kdv-NpY9JHJiRExIVEcfeOqns
https://www.dronesense.com/?gclid=EAIaIQobChMIqo-45_Gx4AIVwoCfCh2CbA0QEAAYASAAEgKMu_D_BwE&fbclid=IwAR3DqethzWJijBZxyXBlNiOGh9HX8zBOH5Kdv-NpY9JHJiRExIVEcfeOqns
https://s.yimg.com/ny/api/res/1.2/2P8Y6UqlB8dKOiVIg9Rscg--~A/YXBwaWQ9aGlnaGxhbmRlcjtzbT0xO3c9ODAw/http://media.zenfs.com/en-US/homerun/digital_trends_973/8122e594705a009db372bf32720d9fe9
https://s.yimg.com/ny/api/res/1.2/2P8Y6UqlB8dKOiVIg9Rscg--~A/YXBwaWQ9aGlnaGxhbmRlcjtzbT0xO3c9ODAw/http://media.zenfs.com/en-US/homerun/digital_trends_973/8122e594705a009db372bf32720d9fe9
https://s.yimg.com/ny/api/res/1.2/2P8Y6UqlB8dKOiVIg9Rscg--~A/YXBwaWQ9aGlnaGxhbmRlcjtzbT0xO3c9ODAw/http://media.zenfs.com/en-US/homerun/digital_trends_973/8122e594705a009db372bf32720d9fe9
https://www.aopa.org/news-and-media/all-news/2018/october/01/drone-study-reveals-potential-and-limits
https://www.aopa.org/news-and-media/all-news/2018/october/01/drone-study-reveals-potential-and-limits
https://www.dco.uscg.mil/Portals/9/CG-5R/SARfactsInfo/SAR%20Sum%20Stats%2064-16.pdf
https://www.dco.uscg.mil/Portals/9/CG-5R/SARfactsInfo/SAR%20Sum%20Stats%2064-16.pdf
https://tutorials-raspberrypi.com/raspberry-pi-ultrasonic-sensor-hc-sr04/
https://pimylifeup.com/raspberry-pi-distance-sensor
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
https://gpiozero.readthedocs.io/en/stable/installing.html

9. “The Equations for Speed”, https://quadstardrones.com/the-equations-for-speed/

33

https://quadstardrones.com/the-equations-for-speed/

